If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80x^2+4x-12=0
a = 80; b = 4; c = -12;
Δ = b2-4ac
Δ = 42-4·80·(-12)
Δ = 3856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3856}=\sqrt{16*241}=\sqrt{16}*\sqrt{241}=4\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{241}}{2*80}=\frac{-4-4\sqrt{241}}{160} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{241}}{2*80}=\frac{-4+4\sqrt{241}}{160} $
| 4z+19=3z+2 | | X+y/3=33.33333 | | -6y+18=3(y-3) | | 6x-2(-7x-12)=-136 | | 4x0.8=x | | 33.84=7g+3.81 | | X+1/7=3/4+x-3/5 | | 12x-11+2x=-4+2x | | 18-2x=-3(6x+3)-3(-5-5x) | | 19+4x=31 | | 4(x+1)=-48 | | 128=x+4 | | 8d-2.5=3d | | x^2-2x+22=0 | | 9-6x=-105 | | 0.3(x+15)+0.4(x+25=25) | | -x+4-2x=7 | | 12+x/11=10 | | 6x+8=146 | | g+5=-33 | | 3x-13+x+37=180 | | x²+6x=112 | | H=0.7(133-a) | | 12(3+a)=38 | | 12(3*a)=48 | | (Z/2)-3=(2z-12)/4 | | -4k+5=2k-1 | | 5n-(2n+3)=2n-4(n+2) | | Z/2-3=2z-12/4 | | 3p-14=6-2p | | 2*5=y | | 5/6h=1/4 |